Sample Question Paper <u>CLASS: XII</u> Session: 2021-22 Mathematics (Code-041) Term - 2

Time Allowed: 2 hours

General Instructions:

- 1. This question paper contains **three sections A, B and C**. Each part is compulsory.
- 2. Section A has 6 short answer type (SA1) questions of 2 marks each.
- 3. Section B has 4 short answer type (SA2) questions of 3 marks each.
- 4. Section C has 4 long answer type questions (LA) of 4 marks each.
- 5. There is an **internal choice** in some of the questions.
- 6. Q14 is a **case-based problem** having 2 sub parts of 2 marks each.

<u>SECTION - A</u>		
1.	Find $\int \frac{\log x}{(1+\log x)^2} dx$	2
	OR	
	Find $\int \frac{\sin 2x}{\sqrt{9-\cos^4 x}} dx$	
2.		2
Ζ.	Write the sum of the order and the degree of the following differential equation:	Z
	$\frac{d}{dx}\left(\frac{dy}{dx}\right) = 5$	
	$\frac{1}{dx}\left(\frac{1}{dx}\right) = 5$	
3.	If \hat{a} and \hat{b} are unit vectors, then prove that	2
	$ \hat{a} + \hat{b} = 2\cos\frac{\theta}{2}$, where θ is the angle between them.	
	$ u + b = 2005_2$, where b is the ungle between them.	
4.	Find the direction cosines of the following line:	2
	0	
	$\frac{3-x}{-1} = \frac{2y-1}{2} = \frac{z}{4}$	
5.	A bag contains 1 red and 3 white balls. Find the probability distribution of the number of red balls if 2 balls are drawn at random from the bag one by	2
	the number of red balls if 2 balls are drawn at random from the bag one-by- one without replacement.	
6.	Two cards are drawn at random from a pack of 52 cards one-by-one without	2
	replacement. What is the probability of getting first card red and second	
	card Jack?	
<u>SECTION - B</u>		
7.	Find: $\int \frac{x+1}{(x^2+1)x} dx$	3
8.	Find the general solution of the following differential equation:	3
	$x\frac{dy}{dx} = y - x\sin(\frac{y}{x})$	
	dx OR	
	Find the particular solution of the following differential equation, given that	
	$y = 0$ when $x = \frac{\pi}{4}$:	
	1	
	$\frac{dy}{dx} + ycotx = \frac{2}{1 + sinx}$ If $\vec{a} \neq \vec{0}$, \vec{a} . $\vec{b} = \vec{a}$. \vec{c} , $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$.	
9.	If $\vec{a} \neq \vec{0}$, $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$, $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$.	3

Get More Learning Materials Here : 🗾



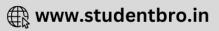
Maximum Marks: 40

10.	Find the shortest distance between the following lines: $\vec{r} = (\hat{\iota} + \hat{\jmath} - \hat{k}) + s(2\hat{\iota} + \hat{\jmath} + \hat{k})$ $\vec{r} = (\hat{\iota} + \hat{\jmath} + 2\hat{k}) + t(4\hat{\iota} + 2\hat{\jmath} + 2\hat{k})$ OR	3
	Find the vector and the cartesian equations of the plane containing the point $\hat{i} + 2\hat{j} - \hat{k}$ and parallel to the lines $\vec{r} = (\hat{i} + 2\hat{j} + 2\hat{k}) + s(2\hat{i} - 3\hat{j} + 2\hat{k}) = 0$ and $\vec{r} = (3\hat{i} + \hat{j} - 2\hat{k}) + t(\hat{i} - 3\hat{j} + \hat{k}) = 0$	
	<u>SECTION – C</u>	
11.	Evaluate: $\int_{-1}^{2} x^3 - 3x^2 + 2x dx$	4
12.	Using integration, find the area of the region in the first quadrant enclosed by the line $x + y = 2$, the parabola $y^2 = x$ and the x-axis. OR	4
	Using integration, find the area of the region $\{(x, y): 0 \le y \le \sqrt{3}x, x^2 + y^2 \le 4\}$	
13.	Find the foot of the perpendicular from the point $(1, 2, 0)$ upon the plane $x - 3y + 2z = 9$. Hence, find the distance of the point $(1, 2, 0)$ from the given plane.	4
14.	CASE-BASED/DATA-BASED	
	Fig 3	
	An insurance company believes that people can be divided into two classes: the	
	are accident prone and those who are not. The company's statistics show	that an
	accident-prone person will have an accident at sometime within a fixed one-year	ar period
	with probability 0.6, whereas this probability is 0.2 for a person who is not	accident
	prone. The company knows that 20 percent of the population is accident prone	2.
	Based on the given information, answer the following questions.	
	(i)what is the probability that a new policyholder will have an accident within a year of purchasing a policy?	2
	(ii) Suppose that a new policyholder has an accident within a year of purchasing a policy. What is the probability that he or she is accident prone?	2



	Subject Code - 041 Marking Scheme <u>CLASS: XII</u> Session: 2021-22 Mathematics (Code-041) Term - 2		
	<u>SECTION – A</u>		
1.	Find: $\int \frac{\log x}{(1+\log x)^2} dx$ Solution: $\int \frac{\log x}{(1+\log x)^2} dx = \int \frac{\log x+1-1}{(1+\log x)^2} dx = \int \frac{1}{1+\log x} dx - \int \frac{1}{(1+\log x)^2} dx$ $= \frac{1}{1+\log x} \times x - \int \frac{-1}{(1+\log x)^2} \times \frac{1}{x} \times x dx - \int \frac{1}{(1+\log x)^2} dx = \frac{x}{1+\log x} + c$ OR	1/2 1+1/2	
	Find: $\int \frac{\sin 2x}{\sqrt{9-\cos^4 x}} dx$ Solution: Put $\cos^2 x = t \Rightarrow -2\cos x \sin x dx = dt \Rightarrow \sin 2x dx = -dt$	1	
2.	The given integral $= -\int \frac{dt}{\sqrt{3^2 - t^2}} = -\sin^{-1}\frac{t}{3} + c = -\sin^{-1}\frac{\cos^2 x}{3} + c$ Write the sum of the order and the degree of the following differential equation: $\frac{d}{dx}\left(\frac{dy}{dx}\right) = 5$ Solution: Order = 2 Degree = 1 Sum = 3	1 1 1/2 1⁄2	
3.	If \hat{a} and \hat{b} are unit vectors, then prove that $ \hat{a} + \hat{b} = 2\cos\frac{\theta}{2}$, where θ is the angle between them. Solution: $(\hat{a} + \hat{b})$. $(\hat{a} + \hat{b}) = \hat{a} ^2 + \hat{b} ^2 + 2(\hat{a}.\hat{b})$ $ \hat{a} + \hat{b} ^2 = 1 + 1 + 2\cos\theta$ $= 2(1 + \cos\theta) = 4\cos^2\frac{\theta}{2}$ $\therefore \hat{a} + \hat{b} = 2\cos\frac{\theta}{2}$,	1 1/2 ½	
4.	Find the direction cosines of the following line: $\frac{3-x}{-1} = \frac{2y-1}{2} = \frac{z}{4}$ Solution: The given line is $\frac{x-3}{1} = \frac{y-\frac{1}{2}}{1} = \frac{z}{4}$ Its direction ratios are <1, 1, 4> Its direction cosines are $\langle \frac{1}{3\sqrt{2}}, \frac{1}{3\sqrt{2}}, \frac{4}{3\sqrt{2}} \rangle$	1 1/2 ½	

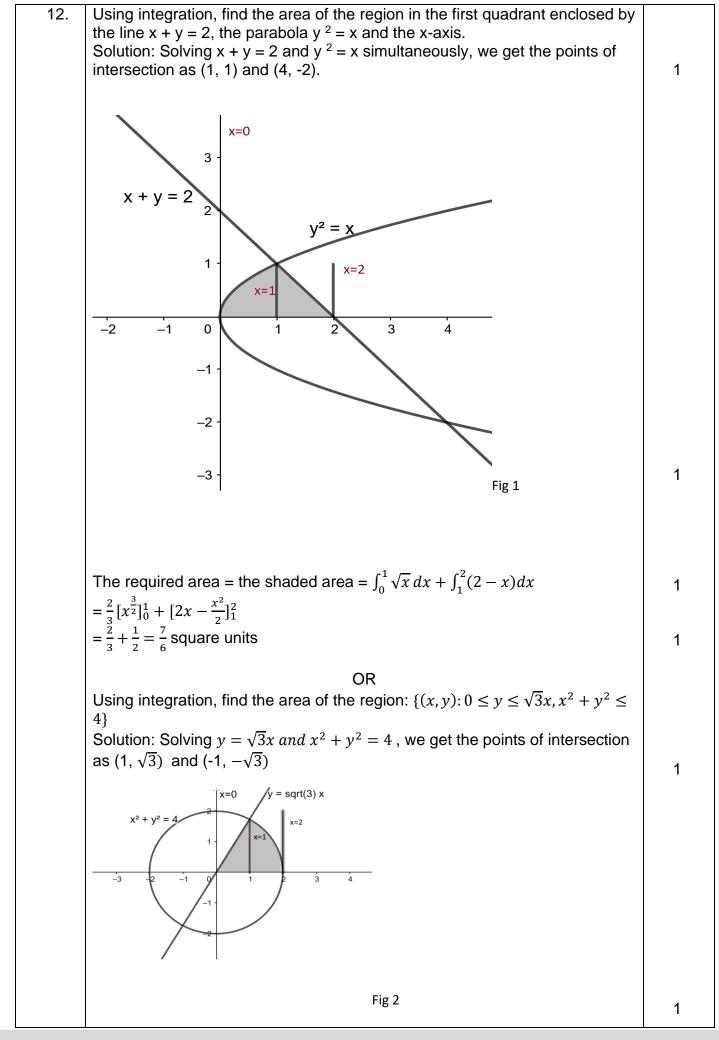
5.	A bag contains 1 red and 3 white balls. Find the probability distribution of the number of red balls if 2 balls are drawn at random from the bag one-by-one without replacement. Solution: Let X be the random variable defined as the number of red balls. Then $X = 0, 1$			1/2
				1/2
	$P(X=0) = \frac{3}{4} \times \frac{2}{3} = \frac{6}{12} = \frac{1}{2}$ $P(X=1) = \frac{1}{4} \times \frac{3}{3} + \frac{3}{4} \times \frac{1}{3} = \frac{6}{12} = \frac{1}{2}$			1/2
	Probability Distribution Table:			
	P(X)	<u> </u>	1	1/2
		2	2	
6.	Two cards are drawn at ra replacement. What is the Jack? Solution: The required pro	probability of getting first of	card red and second card	
	second is a jack card) or			1
	a jack card)) = $\frac{2}{52} \times \frac{3}{51} + \frac{24}{52} \times \frac{4}{51} = \frac{1}{26}$			1
	<u>52 51 52 51 26</u>	SECTION – B		
7.	Find: $\int \frac{x+1}{(x^2+1)x} dx$ Solution: Let $\frac{x+1}{(x^2+1)x} = \frac{Ax+1}{x^2+1}$ $\Rightarrow x + 1 = (Ax + B)x + C(x)$	$(x^2 + 1)$ (An identity)		1/2
	Equating the coefficients, B = 1, C = 1, A + C = 0 Hence, A = -1, B = 1, C = The given integral = $\int \frac{-x+}{x^2+}$	1		1⁄2
	$= \frac{-1}{2} \int \frac{2x-2}{x^2+1} dx + \int \frac{1}{x} dx$ $= \frac{-1}{2} \int \frac{2x}{x^2+1} dx + \int \frac{1}{x^2-1} dx$	x		1/2
	$= \frac{-1}{2}\log(x^2 + 1) + \tan^{-1}x$	$ x + \log x + c$		1+1/2
8.	Find the general solution $x \frac{dy}{dx} = y - xsin(\frac{y}{x})$ Solution: We have the diff	-	l equation:	
	$\frac{dy}{dx} = \frac{y}{x} - \sin(\frac{y}{x})$ The equation is a homogenergy Putting $y = vx \Rightarrow \frac{dy}{dx} = v + \frac{y}{dx}$ The differential equation by	eneous differential equatio - $x \frac{dv}{dx}$	n.	1
	$v + x \frac{dv}{dx} = v - sinv$ $\Rightarrow \frac{dv}{sinv} = -\frac{dx}{x} \Rightarrow cosecvd$ Integrating both sides, we	$\boldsymbol{\lambda}$		1⁄2



		1
	log cosecv - cotv = -log x + logK, K > 0 (Here, $logK$ is an arbitrary constant.)	1
	$\Rightarrow log (cosecv - cotv)x = logK$	
	$\Rightarrow (cosecv - cotv)x = K$	
	$\Rightarrow (cosecv - cotv)x = \pm K$	
	$\Rightarrow \left(cosec \frac{y}{x} - cot \frac{y}{x} \right) x = C$, which is the required general solution.	1/2
	OR	
	Find the particular solution of the following differential equation, given that y	
	= 0 when $x = \frac{\pi}{4}$:	
	1	
	$\frac{dy}{dx} + ycotx = \frac{2}{1+sinx}$	
	ax = 1 + sinx Solution:	
	The differential equation is a linear differential equation	
	$I F = e^{\int cotx dx} = e^{\log sinx} = sinx$	1
	The general solution is given by	
	$ysinx = \int 2\frac{sinx}{1+sinx} dx$	1/2
		, 2
	$\Rightarrow ysinx = 2 \int \frac{sinx + 1 - 1}{1 + sinx} dx = 2 \int [1 - \frac{1}{1 + sinx}] dx$	
	$\Rightarrow ysinx = 2\int \left[1 - \frac{1}{1 + \cos\left(\frac{\pi}{2} - x\right)}\right] dx$	
	$\Rightarrow ysinx = 2 \int \left[1 - \frac{1}{2cos^2 \left(\frac{\pi}{4} - \frac{x}{2}\right)}\right] dx$	
	$\Rightarrow ysinx = 2\int \left[1 - \frac{1}{2}sec^2\left(\frac{\pi}{4} - \frac{x}{2}\right)\right]dx$	
	$\Rightarrow ysinx = 2[x + tan(\frac{\pi}{4} - \frac{x}{2})] + c$	1
	Given that $y = 0$, when $x = \frac{\pi}{4}$,	
	Hence, $0 = 2[\frac{\pi}{4} + tan\frac{\pi}{8}] + c$	
	$\Rightarrow c = -\frac{\pi}{2} - 2tan\frac{\pi}{8}$	
	Hence, the particular solution is	
	$y = cosecx \left[2\left\{x + tan\left(\frac{\pi}{4} - \frac{x}{2}\right)\right\} - \left(\frac{\pi}{2} + 2tan\frac{\pi}{8}\right)\right]$	
	(2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	1/2
9.	If $\vec{a} \neq \vec{0}$, \vec{a} . $\vec{b} = \vec{a}$. \vec{c} , $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$.	
	Solution: We have $\vec{a}.(\vec{b}-\vec{c})=0$	
	$\Rightarrow (\vec{b} - \vec{c}) = \vec{0} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$	
	$\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \perp (\vec{b} - \vec{c})$	1
	Also, $\vec{a} \times (\vec{b} - \vec{c}) = \vec{0}$	
	$\Rightarrow (\vec{b} - \vec{c}) = \vec{0} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$	
	$\Rightarrow (b-c) = 0 \text{ of } a \parallel (b-c)$ $\Rightarrow \vec{b} = \vec{c} \text{ or } \vec{a} \parallel (\vec{b} - \vec{c})$	1
	\vec{a} can not be both perpendicular to $(\vec{b} - \vec{c})$ and parallel to $(\vec{b} - \vec{c})$	
	Hence, $\vec{b} = \vec{c}$.	1
10.	Find the shortest distance between the following lines:	
	$\vec{r} = (\hat{\imath} + \hat{\jmath} - \hat{k}) + s(2\hat{\imath} + \hat{\jmath} + \hat{k})$	
	$\vec{r} = (\hat{\imath} + \hat{\jmath} + 2\hat{k}) + t(4\hat{\imath} + 2\hat{\jmath} + 2\hat{k})$	

R www.studentbro.in

	Solution: Here, the lines are percliption. The shortest distance $ (\vec{a_2} - \vec{a_1}) \times \vec{b} $	
	Solution: Here, the lines are parallel. The shortest distance = $\frac{ (\vec{a_2} - \vec{a_1}) \times b }{ \vec{b} }$	
	$=\frac{\left (3\hat{k}) \times (2\hat{i} + \hat{j} + \hat{k})\right }{\sqrt{4+1+1}}$	1+1/2
	$ (3\hat{k}) \times (2\hat{i} + \hat{j} + \hat{k}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 0 & 3 \\ 2 & 1 & 1 \end{vmatrix} = -3\hat{i} + 6\hat{j} $	1
	Hence, the required shortest distance = $\frac{3\sqrt{5}}{\sqrt{6}}$ units	1/2
	ÖR	
	Find the vector and the cartesian equations of the plane containing the point $\hat{i} + 2\hat{j} - \hat{k}$ and parallel to the lines $\vec{r} = (\hat{i} + 2\hat{j} + 2\hat{k}) + s(2\hat{i} - 3\hat{j} + 2\hat{k}) = 0$ and $\vec{r} = (3\hat{i} + \hat{j} - 2\hat{k}) + t(\hat{i} - 3\hat{j} + \hat{k}) = 0$ Solution: Since, the plane is parallel to the given lines, the cross product of the vectors $2\hat{i} - 3\hat{j} + 2\hat{k}$ and $\hat{i} - 3\hat{j} + \hat{k}$ will be a normal to the plane	
	$ \left (2\hat{\imath} - 3\hat{\jmath} + 2\hat{k}) \times (\hat{\imath} - 3\hat{\jmath} + \hat{k}) = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & -3 & 2 \\ 1 & -3 & 1 \end{vmatrix} = 3\hat{\imath} - 3\hat{k} $	1
	The vector equation of the plane is $\vec{r} \cdot (3\hat{\imath} - 3\hat{k}) = (\hat{\imath} + 2\hat{\jmath} - \hat{k}) \cdot (3\hat{\imath} - 3\hat{k})$ or, $\vec{r} \cdot (\hat{\imath} - \hat{k}) = 2$	1
	and the cartesian equation of the plane is $x - z - 2 = 0$	1
	<u>SECTION – C</u>	
11.		
11.	Evaluate: $\int_{-1}^{2} x^3 - 3x^2 + 2x dx$	
11.		1+1/2
11.	Evaluate: $\int_{-1}^{2} x^3 - 3x^2 + 2x dx$ Solution: The given definite integral = $\int_{-1}^{2} x(x - 1)(x - 2) dx$	1+1/2 1/2
11.	Evaluate: $\int_{-1}^{2} x^{3} - 3x^{2} + 2x dx$ Solution: The given definite integral = $\int_{-1}^{2} x(x - 1)(x - 2) dx$ $= \int_{-1}^{0} x(x - 1)(x - 2) dx + \int_{0}^{1} x(x - 1)(x - 2) dx + \int_{1}^{2} x(x - 1)(x - 2) dx$	
11.	Evaluate: $\int_{-1}^{2} x^{3} - 3x^{2} + 2x dx$ Solution: The given definite integral = $\int_{-1}^{2} x(x - 1)(x - 2) dx$ $= \int_{-1}^{0} x(x - 1)(x - 2) dx + \int_{0}^{1} x(x - 1)(x - 2) dx + \int_{1}^{2} x(x - 1)(x - 2) dx$ $= -\int_{-1}^{0} (x^{3} - 3x^{2} + 2x) dx + \int_{0}^{1} (x^{3} - 3x^{2} + 2x) dx - \int_{1}^{2} (x^{3} - 3x^{2} + 2x) dx$ $= -[\frac{x^{4}}{4} - x^{3} + x^{2}]_{-1}^{0} + [\frac{x^{4}}{4} - x^{3} + x^{2}]_{0}^{1} - [\frac{x^{4}}{4} - x^{3} + x^{2}]_{1}^{2}$	
11.	Evaluate: $\int_{-1}^{2} x^{3} - 3x^{2} + 2x dx$ Solution: The given definite integral = $\int_{-1}^{2} x(x - 1)(x - 2) dx$ $= \int_{-1}^{0} x(x - 1)(x - 2) dx + \int_{0}^{1} x(x - 1)(x - 2) dx + \int_{1}^{2} x(x - 1)(x - 2) dx$ $= -\int_{-1}^{0} (x^{3} - 3x^{2} + 2x) dx + \int_{0}^{1} (x^{3} - 3x^{2} + 2x) dx - \int_{1}^{2} (x^{3} - 3x^{2} + 2x) dx$	1/2
11.	Evaluate: $\int_{-1}^{2} x^{3} - 3x^{2} + 2x dx$ Solution: The given definite integral = $\int_{-1}^{2} x(x - 1)(x - 2) dx$ $= \int_{-1}^{0} x(x - 1)(x - 2) dx + \int_{0}^{1} x(x - 1)(x - 2) dx + \int_{1}^{2} x(x - 1)(x - 2) dx$ $= -\int_{-1}^{0} (x^{3} - 3x^{2} + 2x) dx + \int_{0}^{1} (x^{3} - 3x^{2} + 2x) dx - \int_{1}^{2} (x^{3} - 3x^{2} + 2x) dx$ $= -[\frac{x^{4}}{4} - x^{3} + x^{2}]_{-1}^{0} + [\frac{x^{4}}{4} - x^{3} + x^{2}]_{0}^{1} - [\frac{x^{4}}{4} - x^{3} + x^{2}]_{1}^{2}$	1/2
11.	Evaluate: $\int_{-1}^{2} x^{3} - 3x^{2} + 2x dx$ Solution: The given definite integral = $\int_{-1}^{2} x(x - 1)(x - 2) dx$ $= \int_{-1}^{0} x(x - 1)(x - 2) dx + \int_{0}^{1} x(x - 1)(x - 2) dx + \int_{1}^{2} x(x - 1)(x - 2) dx$ $= -\int_{-1}^{0} (x^{3} - 3x^{2} + 2x) dx + \int_{0}^{1} (x^{3} - 3x^{2} + 2x) dx - \int_{1}^{2} (x^{3} - 3x^{2} + 2x) dx$ $= -[\frac{x^{4}}{4} - x^{3} + x^{2}]_{-1}^{0} + [\frac{x^{4}}{4} - x^{3} + x^{2}]_{0}^{1} - [\frac{x^{4}}{4} - x^{3} + x^{2}]_{1}^{2}$	1/2
11.	Evaluate: $\int_{-1}^{2} x^{3} - 3x^{2} + 2x dx$ Solution: The given definite integral = $\int_{-1}^{2} x(x - 1)(x - 2) dx$ $= \int_{-1}^{0} x(x - 1)(x - 2) dx + \int_{0}^{1} x(x - 1)(x - 2) dx + \int_{1}^{2} x(x - 1)(x - 2) dx$ $= -\int_{-1}^{0} (x^{3} - 3x^{2} + 2x) dx + \int_{0}^{1} (x^{3} - 3x^{2} + 2x) dx - \int_{1}^{2} (x^{3} - 3x^{2} + 2x) dx$ $= -[\frac{x^{4}}{4} - x^{3} + x^{2}]_{-1}^{0} + [\frac{x^{4}}{4} - x^{3} + x^{2}]_{0}^{1} - [\frac{x^{4}}{4} - x^{3} + x^{2}]_{1}^{2}$	1/2
11.	Evaluate: $\int_{-1}^{2} x^{3} - 3x^{2} + 2x dx$ Solution: The given definite integral = $\int_{-1}^{2} x(x - 1)(x - 2) dx$ $= \int_{-1}^{0} x(x - 1)(x - 2) dx + \int_{0}^{1} x(x - 1)(x - 2) dx + \int_{1}^{2} x(x - 1)(x - 2) dx$ $= -\int_{-1}^{0} (x^{3} - 3x^{2} + 2x) dx + \int_{0}^{1} (x^{3} - 3x^{2} + 2x) dx - \int_{1}^{2} (x^{3} - 3x^{2} + 2x) dx$ $= -[\frac{x^{4}}{4} - x^{3} + x^{2}]_{-1}^{0} + [\frac{x^{4}}{4} - x^{3} + x^{2}]_{0}^{1} - [\frac{x^{4}}{4} - x^{3} + x^{2}]_{1}^{2}$	1/2
11.	Evaluate: $\int_{-1}^{2} x^{3} - 3x^{2} + 2x dx$ Solution: The given definite integral = $\int_{-1}^{2} x(x - 1)(x - 2) dx$ $= \int_{-1}^{0} x(x - 1)(x - 2) dx + \int_{0}^{1} x(x - 1)(x - 2) dx + \int_{1}^{2} x(x - 1)(x - 2) dx$ $= -\int_{-1}^{0} (x^{3} - 3x^{2} + 2x) dx + \int_{0}^{1} (x^{3} - 3x^{2} + 2x) dx - \int_{1}^{2} (x^{3} - 3x^{2} + 2x) dx$ $= -[\frac{x^{4}}{4} - x^{3} + x^{2}]_{-1}^{0} + [\frac{x^{4}}{4} - x^{3} + x^{2}]_{0}^{1} - [\frac{x^{4}}{4} - x^{3} + x^{2}]_{1}^{2}$	1/2
11.	Evaluate: $\int_{-1}^{2} x^{3} - 3x^{2} + 2x dx$ Solution: The given definite integral = $\int_{-1}^{2} x(x - 1)(x - 2) dx$ $= \int_{-1}^{0} x(x - 1)(x - 2) dx + \int_{0}^{1} x(x - 1)(x - 2) dx + \int_{1}^{2} x(x - 1)(x - 2) dx$ $= -\int_{-1}^{0} (x^{3} - 3x^{2} + 2x) dx + \int_{0}^{1} (x^{3} - 3x^{2} + 2x) dx - \int_{1}^{2} (x^{3} - 3x^{2} + 2x) dx$ $= -[\frac{x^{4}}{4} - x^{3} + x^{2}]_{-1}^{0} + [\frac{x^{4}}{4} - x^{3} + x^{2}]_{0}^{1} - [\frac{x^{4}}{4} - x^{3} + x^{2}]_{1}^{2}$	1/2



	The required area = the shaded area = $\int_0^1 \sqrt{3}x dx + \int_1^2 \sqrt{4 - x^2} dx$ = $\frac{\sqrt{3}}{2} [x^2]_0^1 + \frac{1}{2} [x\sqrt{4 - x^2} + 4\sin^{-1}\frac{x}{2}]_1^2$	1
	$= \frac{\frac{2}{\sqrt{3}}}{\frac{2}{2}} + \frac{1}{2} [2\pi - \sqrt{3} - 2\frac{\pi}{3}]$ = $\frac{2\pi}{3}$ square units	1
13.	Find the foot of the perpendicular from the point (1, 2, 0) upon the plane	
	x - 3y + 2z = 9. Hence, find the distance of the point (1, 2, 0) from the given plane. Solution: The equation of the line perpendicular to the plane and passing through the point (1, 2, 0) is $x - 1$ $y - 2$ z	1
	$\frac{1}{1} = \frac{1}{-3} = \frac{1}{2}$ The coordinates of the foot of the perpendicular are $(\mu + 1, -3\mu + 2, 2\mu)$ for some μ These coordinates will satisfy the equation of the plane. Hence, we have	1/2
	$\mu + 1 - 3(-3\mu + 2) + 2(2\mu) = 9$ $\Rightarrow \mu = 1$ The foot of the perpendicular is (2, -1, 2). Hence, the required distance = $\sqrt{(1-2)^2 + (2+1)^2 + (0-2)^2} = \sqrt{14}$ units	1 ½ 1

CASE-BASED/DATA-BASED	
Fig 3	
An insurance company believes that people can be divided into two classes: those	e who are
accident prone and those who are not. The company's statistics show that an accid	ent-prone
person will have an accident at sometime within a fixed one-year period with proba	ability 0.6,
whereas this probability is 0.2 for a person who is not accident prone. The company k	nows that
20 percent of the population is accident prone.	
Based on the given information, answer the following questions.	
(i)what is the probability that a new policyholder will have an accident within a year of purchasing a policy?	
(ii) Suppose that a new policyholder has an accident within a year of purchasing a policy. What is the probability that he or she is accident prone?	
Solution: Let E ₁ = The policy holder is accident prone. E ₂ = The policy holder is not accident prone. E = The new policy holder has an accident within a year of purchasing a	
policy. (i) $P(E)=P(E_1) \times P(E/E_1) + P(E_2) \times P(E/E_2)$	1
$=\frac{20}{100} \times \frac{6}{10} + \frac{80}{100} \times \frac{2}{10} = \frac{7}{25}$	1
(ii) By Bayes' Theorem, $P(E_1/E) = \frac{P(E_1) \times P(E/E_1)}{P(E)}$	1
$=\frac{\frac{20}{100}\times\frac{6}{10}}{\frac{280}{1000}}=\frac{3}{7}$	1
	Fig 3 An insurance company believes that people can be divided into two classes: those accident prone and those who are not. The company's statistics show that an accid person will have an accident at sometime within a fixed one-year period with probe whereas this probability is 0.2 for a person who is not accident prone. The company key 20 percent of the population is accident prone. Based on the given information, answer the following questions. (i)what is the probability that a new policyholder will have an accident within a year of purchasing a policy? (ii) Suppose that a new policyholder has an accident within a year of purchasing a policy. What is the probability that he or she is accident prone. E = The policy holder is not accident prone. E = The new policy holder is not accident within a year of purchasing a policy. (i) P(E)= P(E_1) × P(E/E_1) + P(E_2) × P(E/E_2) = $\frac{2W_0}{100} \times \frac{6}{10} + \frac{80}{100} \times \frac{2}{10} = \frac{7}{25}$ (ii) By Bayes' Theorem, $P(E_1/E) = \frac{P(E_1) \times P(E/E_1)}{P(E)}$
